Captando los movimientos más íntimos de los átomos

Por vez primera, se ha conseguido ver en detalle átomos individuales manteniéndose separados de otros o reuniéndose en parejas. Las observaciones atómicas con este grado de sensibilidad podrían, entre otras cosas, ayudar a abrir un camino hacia la obtención de superconductores capaces de funcionar como tales a temperatura ambiente.

Si encerramos un gas en un recipiente e intentamos visualizar sus átomos usando los microscopios más potentes de la actualidad, veremos poco más que una mancha oscura. A temperatura ambiente, los átomos se desplazan a velocidades enormes y son difíciles de localizar.

Sin embargo, si estos átomos son enfriados hasta temperaturas ultrabajas, su velocidad disminuye mucho, y entonces hay oportunidades para estudiar cómo pueden formar estados exóticos de la materia, como los superfluidos, los superconductores y los imanes cuánticos.

El equipo de Martin Zwierlein, del Instituto Tecnológico de Massachusetts (MIT), en Cambridge, Estados Unidos, ha enfriado ahora un gas de átomos de potasio hasta varios nanokelvins (a una fracción ínfima de grado por encima del Cero Absoluto, la temperatura más baja que permiten las leyes de la física) y los han atrapado dentro de una lámina esencialmente bidimensional (por su mínimo grosor) de una retícula óptica creada por láseres que se entrecruzan. Usando un microscopio de alta resolución, los investigadores tomaron imágenes de los átomos enfriados que residían en la retícula.


Recreación artística del momento en que, por primera vez, los autores de la nueva investigación, vieron átomos individuales alejándose entre sí o reuniéndose en parejas. (Ilustración: Sampson Wilcox)


Examinando las correlaciones entre las posiciones de los átomos en cientos de tales imágenes, el equipo observó átomos individuales interactuando de maneras bastante peculiares, a juzgar por su posición en la retícula. Algunos átomos exhibieron un comportamiento “antisocial” y se mantuvieron alejados de los demás, mientras que algunos se agruparon con orientaciones magnéticas alternas. Otros parecieron adherirse a otros, creando parejas de átomos junto a espacios vacíos, o agujeros.

El equipo de investigación cree que estas correlaciones espaciales podrían aportar datos nuevos y esclarecedores sobre los orígenes del comportamiento superconductor. Los superconductores son materiales notables en los que los electrones se emparejan y viajan sin fricción, lo que significa que no se pierde energía en el recorrido. Si se lograse crear a un costo razonable superconductores que se comportasen como tales a temperatura ambiente, ello podría marcar el inicio de una nueva era en la historia del uso humano de la energía, al permitir a la humanidad disponer de electricidad cuya distribución disfrutaría de una eficiencia del 100 por cien, sin pérdida alguna.

Confirman el aparente hallazgo de una quinta fuerza de la naturaleza

Unos descubrimientos recientes que indican el posible descubrimiento de una partícula subatómica previamente desconocida podrían ser la prueba de que existe una quinta fuerza fundamental de la naturaleza, según una nueva investigación.

Después de tanto tiempo asumiendo que son cuatro las fuerzas fundamentales (gravitación, electromagnetismo, y las fuerzas nucleares fuerte y débil), ahora parece que se ha descubierto una quinta. Si experimentos adicionales confirman su existencia, este descubrimiento cambiaría completamente nuestra comprensión del universo, con consecuencias para las teorías de unificación de las fuerzas y para las teorías sobre la identidad de la materia oscura, tal como subraya Jonathan Feng, coautor de la citada investigación y profesor de física y astronomía en la Universidad de California en Irvine, Estados Unidos.

Feng y sus colegas encontraron la pista inicial en un estudio de mediados de 2015, realizado por físicos nucleares experimentales de la Academia Húngara de Ciencias, que estaban buscando “fotones oscuros”, partículas que representarían a la invisible materia oscura, la cual constituye el 85 por ciento de la masa del universo. El trabajo de esos investigadores húngaros puso de manifiesto una anomalía en la desintegración radiactiva que apunta a la existencia de una partícula ligera, que solo sería unas 30 veces más pesada que un electrón.

Esos científicos no pudieron determinar que se tratase de una nueva fuerza. Simplemente vieron un exceso de eventos de partículas que indicaban la acción de una nueva, pero no estaba claro para ellos si era una partícula de materia o una partícula portadora de fuerza.

Si experimentos adicionales lo confirman, este descubrimiento de una posible quinta fuerza cambiaría completamente nuestra comprensión del universo, en palabras del profesor Jonathan Feng, incluyendo aquello que mantiene compactas a las galaxias.

Feng y sus colegas estudiaron los datos de los investigadores húngaros así como todos los experimentos anteriores en este campo y han llegado a la conclusión de que las evidencias no respaldan la teoría de las partículas de materia ni la de los fotones oscuros. En cambio sí encajan con una nueva teoría que han propuesto y que sintetiza todos los datos disponibles. A la luz de esto, el descubrimiento podría indicar la existencia de una quinta fuerza fundamental.

El trabajo del equipo de Feng indica que en vez de ser un fotón oscuro, la partícula podría ser un “bosón X protofóbico”. La fuerza eléctrica normal actúa sobre electrones y protones, mientras que este bosón recién descubierto interactuaría solo con electrones y neutrones, y en un rango extremadamente limitado.

No existe ningún otro bosón observado que tenga esta misma característica.

¿Es 'Próxima b' el futuro hogar de la humanidad?

Un equipo de astrónomos anuncia el hallazgo de un planeta rocoso similar a la Tierra en nuestra estrella más cercana. Además de ser uno de los descubrimientos astronómicos más impactantes de los últimos años, el anuncio ha disparado la imaginación sobre la posibilidad de llegar hasta allí en un futuro lejano.



El equipo del astrónomo Guillem Anglada-Escudé publica este miércoles en la revista Nature uno de los descubrimientos astronómicos más impactantes y esperados: la existencia de un planeta de tamaño similar a la Tierra en la órbita de la estrella más cercana a nuestro Sistema Solar, a apenas cuatro años luz de distancia de nosotros. A partir de los datos obtenidos desde dos telescopios del Observatorio Europeo Austral (ESO) entre 2000 y 2014 y una serie de observaciones realizadas entre enero y marzo de 2016, los científicos han detectado la presencia de un planeta rocoso, de una masa de 1,3 veces la de la Tierra, que orbita alrededor de la estrella Próxima Centauri.

Lo que lo hace especialmente interesante es que el planeta se mueve en la zona 'templada' de la estrella, en aquella en que quizá sería posible encontrar agua en estado líquido. El planeta, bautizado como Próxima b, da una vuelta a su estrella cada11,2 días y lo hace tan rápido porque está mucho más cerca de lo que estamos nosotros del Sol, a unos 7,5 millones de kilómetros (un cinco por ciento de la distancia que nos separa a nosotros de nuestra estrella). Por otro lado, Próxima Centauri es una enana roja, una estrella fría de la constelación de Centaurus que se encuentra cerca de un par de estrellas mucho más brillantes conocidas como Alfa Centauri A y B.



Lo que lo hace especialmente interesante es que el planeta se mueve en la zona 'templada' de la estrella, en aquella en que quizá sería posible encontrar agua en estado líquido. El planeta, bautizado como Próxima b, da una vuelta a su estrella cada11,2 días y lo hace tan rápido porque está mucho más cerca de lo que estamos nosotros del Sol, a unos 7,5 millones de kilómetros (un cinco por ciento de la distancia que nos separa a nosotros de nuestra estrella). Por otro lado, Próxima Centauri es una enana roja, una estrella fría de la constelación de Centaurus que se encuentra cerca de un par de estrellas mucho más brillantes conocidas como Alfa Centauri A y B.

Aunque Próxima Centauri es mucho más débil que el Sol, el hecho de estar tan cerca hace que el planeta se vea fuertemente afectado por las llamaradas de rayos X y de radiación ultravioleta procedentes de la estrella. “La densidad de flujo magnético de Próxima Centauri sobre este planeta es 600 veces mayor que la del Sol sobre la Tierra, el flujo de rayos X es unas 400 veces más intenso que el que recibe nuestro planeta, y otro tanto ocurre con la radiación ultravioleta que alcanza Próxima b”, explica a Next Carlos Briones, investigador del Centro de Astrobiología (CSIC-INTA) y experto en astrobiología. “Es difícil aventurar si en ese entorno de radiación tan extremo la vida podría haberse originado y mantenido”, añade. Y más teniendo en cuenta que se desconoce si Próxima b tiene un campo magnético como el de la Tierra, que le protege de las radiaciones. De lo contrario, las fuertes tormentas harían difícil la proliferación de algún tipo de vida.



Aunque aún falta muchísima información para conocer su Próxima b es potencialmente habitable, sí podemos hacernos una idea del aspecto que tendría este planeta si pudiéramos posarnos sobre su superficie. "El tamaño aparente de su estrella en el cielo sería casi el triple que el nuestro, todo un espectáculo", asegura Miguel Santander, astrónomo y escritor de ciencia ficción. "Se trata de una estrella rojiza y mortecina que apenas emite luz en el espectro visible, de modo que el planeta estaría envuelto, para nuestros ojos adaptados a la vida en la Tierra, en una penumbra constante que las cercanas Alfa Centauri A y B no lograrían deshacer". Por otro lado, al estar tan cerca de la estrella, es probable que Próxima b esté acoplado en su rotación con Próxima Centauri, del mismo modo que lo estamos nosotros con la Luna. Es decir, el planeta ofrecería siempre la misma cara a su estrella, lo que complicaría la habitabilidad del mismo, según Santander, "al estar el lado diurno muy caliente y el nocturno tan frío que, de haber atmósfera, esta podría llegar a congelarse, literalmente". Otra posibilidad interesante es que existiese un cinturón habitable en la frontera entre ambos hemisferios, el frío y el más caliente, aunque por ahora tal posibilidad es pura especulación.

¿Cómo podemos aprender más cosas sobre las características de este mundo tan cercano y prometedor? Si tuviéramos la suerte de que Próxima b transita en algún momento entre su estrella y nosotros (los científicos estiman que solo existen un 1,5% de probabilidades de esto) podríamos utilizar la espectroscopia de transmisión para analizar la composición de su atmósfera y saber más detalles sobre las posibilidades de viajar hasta allí. Con el lanzamiento del telescopio espacial james Webb en 2018, los astrónomos esperan encontrar muchos más exoplanetas en la zona templada de las enanas rojas, lo que permitiría comparar los datos. Las enanas rojas son las estrellas más abundantes de la galaxia, pero solo se han descubierto unos cuantos planetas del tamaño de la Tierra en sus zonas templadas. Como escribe Artie Hatzesen Nature, “si solo una pequeña parte de las enanas rojas tuvieran planetas en su zona templada, nuestra galaxia podría estar bullendo de vida”. Como curiosidad, Próxima Centauri seguirá existiendo muchos cientos de miles de años después de que se extinga nuestro sol, lo que permitiría a cualquier forma de vida existente allí seguir evolucionando mucho después o, quién sabe, a los propios humanos mudarse de barrio dentro de la galaxia si la tecnología nos permite superar la distancia.

De momento, la humanidad se encuentra un poco lejos de llegar hasta un sistema situado a cuatro años luz, lo cual no quiere decir que sea imposible. La sonda más rápida lanzada hasta ahora es la Voyager 1, que se aleja del Sol a una velocidad de 17 km/s. A esa velocidad, recuerda el astrofísico y divulgador Daniel Marín, tardaríamos 74.000 años en llegar a Próxima Centauri. “Usando la tecnología que ya está disponible es posible enviar naves no tripuladas que vayan casi cinco veces más rápido gracias al empleo de velas solares y sobrevuelos cercanos del Sol y Júpiter”, añade. “Evidentemente, no es suficiente, ya que tardaríamos más de 14.000 años en llegar”. Para alcanzar Próxima b hace falta introducir nuevas tecnologías, asegura el astrofísico, como la propulsión mediante velas láser. “En ese caso sería posiblellegar a la estrella más cercana en 20 años”. Ya se ha presentado un proyecto para trabajar en esa vía, aunque todavía nos falta mucho para alcanzar este nivel de desarrollo. “Pero si de lo que hablamos es de enviar personas, me temo que todavía nos queda mucho por delante”, concluye Marín. “Para eso no solo deberíamos desarrollar nuevas tecnologías, sino crearlas casi desde cero (propulsión de antimateria, fusión nuclear, etc.) y ni siquiera sabemos si son factibles”.

Referencia: A terrestrial planet candidate in a temperate orbit around Proxima Centauri(Nature) DOI 10.1038/nature19106